8,160
edits
Changes
From Fellrnr.com, Running tips
no edit summary
* The level required to be ketogenic (hyperketonemia) has been suggested as 0.2 mmol/L measured as the combination of AcAc and BOHB in whole blood as this is slightly above the levels seen in "normal" individuals<ref name="Robinson-1980"/>.
* The book "The Art and Science of Low Carbohydrate Living" calls the range 0.5 to 5.0 mmol/L of blood ketones "nutritional ketosis"<ref name="Phinney-2011-p31"/>
* The follow on book "The Art and Science of Low Carbohydrate Performance" suggests that BOHB levels of 0.5 mmol/L to 3.0 mmol/L is "optimal"<ref name="Phinney-2012-p155"/>, with benefits starting at 0.5 mmol/L and improving to 3.0 mmol/L, but levels above 3.0 mmol/L not producing additional benefits<ref name="Phinney-2012-p157"/>.(It is unclear what research these levels are based on.)
* For epilepsy, the recommendation is for AcAc to be 80-160 mmol/L as measured by urine dipstick<ref name="Kossoff-2011-p201"/>, though this level is not necessarily sufficient<ref name="Gilbert-2000"/>.
* The range of 2 to 7 mmol/L<ref name="Vanitallie-2005"/> or 2 to 5 mmol/L<ref name="Veech-2001"/> has been suggested in some literature as a "therapeutic" range.
* A study of 74 children on the ketogenic diet for epilepsy found that blood BOHB levels of greater than 4 mmol/L were correlated with better seizure control than those with lower levels<ref name="Gilbert-2000"/>.
=Example levels=
<ref name="Cahill2006">George F. Cahill, Fuel Metabolism in Starvation, Annual Review of Nutrition, volume 26, issue 1, 2006, pages 1–22, ISSN [http://www.worldcat.org/issn/0199-9885 0199-9885], doi [http://dx.doi.org/10.1146/annurev.nutr.26.061505.111258 10.1146/annurev.nutr.26.061505.111258]</ref>
<ref name="Robinson-1980"> AM. Robinson, DH. Williamson, Physiological roles of ketone bodies as substrates and signals in mammalian tissues., Physiol Rev, volume 60, issue 1, pages 143-87, Jan 1980, PMID [http://www.ncbi.nlm.nih.gov/pubmed/6986618 6986618]</ref>
<ref name="Vanitallie-2005"> TB. Vanitallie, C. Nonas, A. Di Rocco, K. Boyar, K. Hyams, SB. Heymsfield, Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study., Neurology, volume 64, issue 4, pages 728-30, Feb 2005, doi [http://dx.doi.org/10.1212/01.WNL.0000152046.11390.45 10.1212/01.WNL.0000152046.11390.45], PMID [http://www.ncbi.nlm.nih.gov/pubmed/15728303 15728303]</ref>
<ref name="Veech-2001"> RL. Veech, B. Chance, Y. Kashiwaya, HA. Lardy, GF. Cahill, Ketone bodies, potential therapeutic uses., IUBMB Life, volume 51, issue 4, pages 241-7, Apr 2001, doi [http://dx.doi.org/10.1080/152165401753311780 10.1080/152165401753311780], PMID [http://www.ncbi.nlm.nih.gov/pubmed/11569918 11569918]</ref>
<ref name="Kossoff-2011-p201">Eric. Kossoff, [http://www.amazon.com/Ketogenic-Diets-Eric-H-Kossoff/dp/1936303108 Ketogenic diets : treatments for epilepsy and other disorders], date 2011, publisher Demos Health, location New York, isbn 1-936303-10-8, Page 201</ref>
<ref name="Kossoff-2011-2274">Eric. Kossoff, [http://www.amazon.com/Ketogenic-Diets-Eric-H-Kossoff/dp/1936303108 Ketogenic diets : treatments for epilepsy and other disorders], date 2011, publisher Demos Health, location New York, isbn 1-936303-10-8, Kindle Offset 2274</ref>