Ketogenic Diets for Cancer

From Fellrnr.com, Running tips
Revision as of 17:10, 29 December 2013 by User:Fellrnr (User talk:Fellrnr | contribs) (Created page with "The Ketogenic Diet may help with the treatment of cancer, including brain tumors<ref name="Seyfried-2011"/><ref name="Seyfried-2009"/><ref name="Seyfried-2005"/>. There ar...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The Ketogenic Diet may help with the treatment of cancer, including brain tumors[1][2][3]. There are researchers who believe that the origin of cancer lies with metabolic abnormalities that lead to genetic problems rather than the genetic problems being the root cause[4].

1 How the Ketogenic Diet may help

There may be several mechanisms behind the effect of the ketogenic diet on cancer.

  • Tumor cells are unable to metabolize ketones[5].
  • Cancers promote the growth of new blood vessels, something the ketogenic diet inhibits, as Ketones are anti-angiogenic[6]. This is also seen with calorie restriction, which reduces vascularity and increased apoptosis in mouse and human brain tumors[7].
  • Cancer cells often don't undergo natural cell death, something the ketogenic diet enhances[8].
  • Ketones may directly reduce the viability of cancer cells[8].
  • The ketogenic diet typically reduces blood glucose levels, and high blood glucose is associated with tumor growth and reduced survival rates in cancer patients[9][10][11] and animal models[12].
  • Carbohydrate restriction lowers insulin and insulin-like growth factor (IGF) which directly stimulate tumor cell proliferation[13].

2 Animal Studies

There are a number of animal studies that have looked at the ketogenic diet and cancer.

  • A study of Glioma tumor cells showed that an unrestricted ketogenic diet in mice that raised ketone levels without lowering glucose levels did not change survival rates[5].
  • The unrestricted diet combined with Omega 3 and MCT delayed the growth of implanted gastric cancer cells in mice[14].
  • The ketogenic diet may need to be combined with calorie restriction to ensure lowered glucose levels for the treatment of brain tumors[15]. A study that compared an unrestricted standard diet, an unrestricted ketogenic diet and a restricted ketogenic diet in mice with implanted brain tumors, only the restricted ketogenic diet improved survival rates[6].
  • Drugs are being developed for cancer treatment that target metabolic pathways[16].
  • Giving a no-carbohydrate ketogenic diet to rats with grafted prostate cancer tumors resulted in a 33% smaller tumor size than controls fed a western diet[17]. In another study, rats with grafted prostate cancer tumors given 0%, 10% or 20% carbohydrate had similar survival rates[18].
  • Rats with grafted prostate cancer tumors given a no-carbohydrate ketogenic diet (83% fat, 0% carbohydrate, 17% protein) had a better survival rate than those given a medium carbohydrate diet (40% fat, 43% carbohydrate, 17% protein), but their survival was similar to those given a low fat diet (12% fat, 71% carbohydrate, 17% protein)[19].
  • Rats with grafted lung cancer tumors showed that a ketogenic diet improved the effectiveness of radiation and chemotherapy[20].
  • Rats with metastatic cancer had a 57% longer average survival time on the ketogenic diet than controls, and 78% longer when the ketogenic diet was combined with a hyperbaric oxygen therapy[21].

3 Human Case Studies

While I have not found any large studies of the ketogenic diet on humans, there are a number of smaller case studies that look promising.

  • A case study of two children with inoperable Astrocytoma brain tumors that regressed under the ketogenic diet that lowered blood glucose levels is promising[22]. This trial used the MCT Diet with 60% of calories from MCT, 20% from protein, 10% from carbohydrate, and 10% from other dietary fats, with total calories calculated at 120% of target to ensure weight gain[23].
  • A study looked at the use of the Ketogenic Diet in 16 patients with advanced cancer and no other treatment options concluded that the diet was a suitable possibility and might improve some aspects of their quality of life[24]. Not all the patients maintained the diet, with only 5 completing the 12 week study. Because of the low number of subjects and their heterogeneity, it was not possible to evaluate the impact of the diet on the tumors. However, the outcome for the 16 patients is intriguing:
    • 4 patients dropped out early.
    • 2 patients died early.
    • 5 patients discontinued the diet and their disease progressed.
    • 5 patients followed the diet and their disease was stable.
  • A 65 year old woman with Glioblastoma multiforme (the most malignant primary brain tumor in adults and children) was treated with partial tumor resection and a combination of standard therapy and a restricted ketogenic diet. The diet was a calorie restricted (600 kcal/day) Ketogenic Ratio Diet (4:1) for two months, resulting in a 20% reduction in body weight. After the two months there were no discernable signs of the tumor with FDG-PET or MRI imaging[25]. When a normal diet was resumed for 10 weeks there were signs of the tumor resurging on MRI scans. (See timeline of treatment below.)
  • A (non-ketogenic) high fat diet may help maintain body weight and improve quality of life[26].
Timeline of the treatment of a 65 year old woman with Glioblastoma multiforme ..

4 Non-Ketogenic Fat Intake and Cancer

There are a number of studies that have looked at the general relationship between fat intake and cancer.

  • Fat intake in a non-ketogenic diet impacts tumor growth[27].
  • Omega 3 supplementation may improve the effectiveness of conventional chemotherapy and radiation therapy treatments of cancer[28][29][30][31], as well as directly impacting the tumor[32][33][34][35][36] and metastasis[35][36].
  • Omega-6 oils may increase tumor growth[35][37][27].
  • Saturated fat tends to stimulate tumor growth, Omega-6 stimulates more than saturated fat, and Omega-3 inhibits growth[27].
    • Fiber may reduce the impact of fats on cancer risk[38].
  • Omega-3 supplementation may reduce the risk of some cancers[39][40][41].
  • In a study of 35,298 Singapore Chinese women aged 45-74 years, those with the lowest intake of fish Omega-3 had a 26% higher risk of breast cancer[42]. For those with the lowest intake of Omega-3, the intake of Omega-6 was inversely related to their breast cancer risk. However, another study of 23,693 postmenopausal women showed that fish consumption increased the risk of estrogen receptor-positive breast cancer by 50% in those with the highest intake compared with the lowest[43]. It has been suggested that this may be due to contamination with organochlorines or other endocrine disrupters in the fish[44]. Other studies have found no relationship between fish intake and cancer[45][46].
  • The results of trials with mono-unsaturated oils such as olive oils on tumor growth have been inconsistent[27].
  • Restricting calories intake also impacts tumor growth, with 12% restriction reducing tumor growth in rodents[27].
  • Even modest amounts of Omega-6 or saturated fat may negate the benefit of Omega-3[27].

5 See Also

6 References

  1. TN. Seyfried, MA. Kiebish, J. Marsh, LM. Shelton, LC. Huysentruyt, P. Mukherjee, Metabolic management of brain cancer., Biochim Biophys Acta, volume 1807, issue 6, pages 577-94, Jun 2011, doi 10.1016/j.bbabio.2010.08.009, PMID 20804725
  2. BT. Seyfried, M. Kiebish, J. Marsh, P. Mukherjee, Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet., J Cancer Res Ther, volume 5 Suppl 1, pages S7-15, Sep 2009, doi 10.4103/0973-1482.55134, PMID 20009300
  3. TN. Seyfried, P. Mukherjee, Targeting energy metabolism in brain cancer: review and hypothesis., Nutr Metab (Lond), volume 2, pages 30, Oct 2005, doi 10.1186/1743-7075-2-30, PMID 16242042
  4. T. N. Seyfried, R. Flores, A. M. Poff, D. P. D'Agostino, Cancer as a Metabolic Disease: Implications for Novel Therapeutics, Carcinogenesis, 2013, ISSN 0143-3334, doi 10.1093/carcin/bgt480
  5. 5.0 5.1 GD. Maurer, DP. Brucker, O. Bähr, PN. Harter, E. Hattingen, S. Walenta, W. Mueller-Klieser, JP. Steinbach, J. Rieger, Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy., BMC Cancer, volume 11, pages 315, 2011, doi 10.1186/1471-2407-11-315, PMID 21791085
  6. 6.0 6.1 W. Zhou, P. Mukherjee, MA. Kiebish, WT. Markis, JG. Mantis, TN. Seyfried, The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer., Nutr Metab (Lond), volume 4, pages 5, 2007, doi 10.1186/1743-7075-4-5, PMID 17313687
  7. P. Mukherjee, LE. Abate, TN. Seyfried, Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors., Clin Cancer Res, volume 10, issue 16, pages 5622-9, Aug 2004, doi 10.1158/1078-0432.CCR-04-0308, PMID 15328205
  8. 8.0 8.1 R. Skinner, A. Trujillo, X. Ma, EA. Beierle, Ketone bodies inhibit the viability of human neuroblastoma cells., J Pediatr Surg, volume 44, issue 1, pages 212-6; discussion 216, Jan 2009, doi 10.1016/j.jpedsurg.2008.10.042, PMID 19159745
  9. KL. Chaichana, MJ. McGirt, GF. Woodworth, G. Datoo, RJ. Tamargo, J. Weingart, A. Olivi, H. Brem, A. Quinones-Hinojosa, Persistent outpatient hyperglycemia is independently associated with survival, recurrence and malignant degeneration following surgery for hemispheric low grade gliomas., Neurol Res, volume 32, issue 4, pages 442-8, May 2010, doi 10.1179/174313209X431101, PMID 19589201
  10. RL. Derr, X. Ye, MU. Islas, S. Desideri, CD. Saudek, SA. Grossman, Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma., J Clin Oncol, volume 27, issue 7, pages 1082-6, Mar 2009, doi 10.1200/JCO.2008.19.1098, PMID 19139429
  11. MJ. McGirt, KL. Chaichana, M. Gathinji, F. Attenello, K. Than, AJ. Ruiz, A. Olivi, A. Quiñones-Hinojosa, Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas., Neurosurgery, volume 63, issue 2, pages 286-91; discussion 291, Aug 2008, doi 10.1227/01.NEU.0000315282.61035.48, PMID 18797358
  12. V. Venkateswaran, AQ. Haddad, NE. Fleshner, R. Fan, LM. Sugar, R. Nam, LH. Klotz, M. Pollak, Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts., J Natl Cancer Inst, volume 99, issue 23, pages 1793-800, Dec 2007, doi 10.1093/jnci/djm231, PMID 18042933
  13. RJ. Klement, U. Kämmerer, Is there a role for carbohydrate restriction in the treatment and prevention of cancer?, Nutr Metab (Lond), volume 8, pages 75, 2011, doi 10.1186/1743-7075-8-75, PMID 22029671
  14. C. Otto, U. Kaemmerer, B. Illert, B. Muehling, N. Pfetzer, R. Wittig, HU. Voelker, A. Thiede, JF. Coy, Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides., BMC Cancer, volume 8, pages 122, 2008, doi 10.1186/1471-2407-8-122, PMID 18447912
  15. TN. Seyfried, M. Kiebish, P. Mukherjee, J. Marsh, Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets., Epilepsia, volume 49 Suppl 8, pages 114-6, Nov 2008, doi 10.1111/j.1528-1167.2008.01853.x, PMID 19049606
  16. DA. Tennant, RV. Durán, E. Gottlieb, Targeting metabolic transformation for cancer therapy., Nat Rev Cancer, volume 10, issue 4, pages 267-77, Apr 2010, doi 10.1038/nrc2817, PMID 20300106
  17. SJ. Freedland, J. Mavropoulos, A. Wang, M. Darshan, W. Demark-Wahnefried, WJ. Aronson, P. Cohen, D. Hwang, B. Peterson, Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis., Prostate, volume 68, issue 1, pages 11-9, Jan 2008, doi 10.1002/pros.20683, PMID 17999389
  18. EM. Masko, JA. Thomas, JA. Antonelli, JC. Lloyd, TE. Phillips, SH. Poulton, MW. Dewhirst, SV. Pizzo, SJ. Freedland, Low-carbohydrate diets and prostate cancer: how low is "low enough"?, Cancer Prev Res (Phila), volume 3, issue 9, pages 1124-31, Sep 2010, doi 10.1158/1940-6207.CAPR-10-0071, PMID 20716631
  19. JC. Mavropoulos, WC. Buschemeyer, AK. Tewari, D. Rokhfeld, M. Pollak, Y. Zhao, PG. Febbo, P. Cohen, D. Hwang, The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model., Cancer Prev Res (Phila), volume 2, issue 6, pages 557-65, Jun 2009, doi 10.1158/1940-6207.CAPR-08-0188, PMID 19470786
  20. B. G. Allen, S. K. Bhatia, J. M. Buatti, K. E. Brandt, K. E. Lindholm, A. M. Button, L. I. Szweda, B. J. Smith, D. R. Spitz, M. A. Fath, Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts, Clinical Cancer Research, volume 19, issue 14, 2013, pages 3905–3913, ISSN 1078-0432, doi 10.1158/1078-0432.CCR-12-0287
  21. Chih-Hsin Tang, Angela M. Poff, Csilla Ari, Thomas N. Seyfried, Dominic P. D'Agostino, The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer, PLoS ONE, volume 8, issue 6, 2013, pages e65522, ISSN 1932-6203, doi 10.1371/journal.pone.0065522
  22. LC. Nebeling, F. Miraldi, SB. Shurin, E. Lerner, Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports., J Am Coll Nutr, volume 14, issue 2, pages 202-8, Apr 1995, PMID 7790697
  23. LC. Nebeling, E. Lerner, Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer., J Am Diet Assoc, volume 95, issue 6, pages 693-7, Jun 1995, doi 10.1016/S0002-8223(95)00189-1, PMID 7759747
  24. Melanie Schmidt, Nadja Pfetzer, Micheal Schwab, Ingrid Strauss, Ulrike Kämmerer, Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial, Nutrition & Metabolism, volume 8, issue 1, 2011, pages 54, ISSN 1743-7075, doi 10.1186/1743-7075-8-54
  25. Giulio Zuccoli, Norina Marcello, Anna Pisanello, Franco Servadei, Salvatore Vaccaro, Purna Mukherjee, Thomas N Seyfried, Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report, Nutrition & Metabolism, volume 7, issue 1, 2010, pages 33, ISSN 1743-7075, doi 10.1186/1743-7075-7-33
  26. R. Breitkreutz, K. Tesdal, D. Jentschura, O. Haas, H. Leweling, E. Holm, Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study., Wien Klin Wochenschr, volume 117, issue 19-20, pages 685-92, Oct 2005, doi 10.1007/s00508-005-0455-3, PMID 16416368
  27. 27.0 27.1 27.2 27.3 27.4 27.5 CW. Welsch, Dietary fat, calories, and mammary gland tumorigenesis., Adv Exp Med Biol, volume 322, pages 203-22, 1992, PMID 1442296
  28. WE. Hardman, (n-3) fatty acids and cancer therapy., J Nutr, volume 134, issue 12 Suppl, pages 3427S-3430S, Dec 2004, PMID 15570049
  29. WE. Hardman, Omega-3 fatty acids to augment cancer therapy., J Nutr, volume 132, issue 11 Suppl, pages 3508S-3512S, Nov 2002, PMID 12421878
  30. H. Xue, S. Le Roy, MB. Sawyer, CJ. Field, LA. Dieleman, VE. Baracos, Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour., Br J Nutr, volume 102, issue 3, pages 434-42, Aug 2009, doi 10.1017/S0007114508199482, PMID 19250573
  31. YM. Dupertuis, MM. Meguid, C. Pichard, Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids., Curr Opin Clin Nutr Metab Care, volume 10, issue 4, pages 427-32, Jul 2007, doi 10.1097/MCO.0b013e3281e2c9d4, PMID 17563460
  32. CN. Gutt, L. Brinkmann, A. Mehrabi, H. Fonouni, BP. Müller-Stich, G. Vetter, JM. Stein, P. Schemmer, MW. Büchler, Dietary omega-3-polyunsaturated fatty acids prevent the development of metastases of colon carcinoma in rat liver., Eur J Nutr, volume 46, issue 5, pages 279-85, Aug 2007, doi 10.1007/s00394-007-0662-y, PMID 17593466
  33. WE. Hardman, Dietary canola oil suppressed growth of implanted MDA-MB 231 human breast tumors in nude mice., Nutr Cancer, volume 57, issue 2, pages 177-83, 2007, doi 10.1080/01635580701277445, PMID 17571951
  34. T. Kato, RL. Hancock, H. Mohammadpour, B. McGregor, P. Manalo, S. Khaiboullina, MR. Hall, L. Pardini, RS. Pardini, Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice., Cancer Lett, volume 187, issue 1-2, pages 169-77, Dec 2002, PMID 12359365
  35. 35.0 35.1 35.2 DP. Rose, JM. Connolly, J. Rayburn, M. Coleman, Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice., J Natl Cancer Inst, volume 87, issue 8, pages 587-92, Apr 1995, PMID 7752256
  36. 36.0 36.1 DP. Rose, JM. Connolly, M. Coleman, Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice., Clin Cancer Res, volume 2, issue 10, pages 1751-6, Oct 1996, PMID 9816126
  37. DP. Rose, JM. Connolly, CL. Meschter, Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice., J Natl Cancer Inst, volume 83, issue 20, pages 1491-5, Oct 1991, PMID 1920496
  38. SD. Hursting, M. Thornquist, MM. Henderson, Types of dietary fat and the incidence of cancer at five sites., Prev Med, volume 19, issue 3, pages 242-53, May 1990, PMID 2377587
  39. RA. Karmali, n-3 fatty acids and cancer., J Intern Med Suppl, volume 731, pages 197-200, 1989, PMID 2539832
  40. PD. Terry, TE. Rohan, A. Wolk, Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence., Am J Clin Nutr, volume 77, issue 3, pages 532-43, Mar 2003, PMID 12600840
  41. EA. de Deckere, Possible beneficial effect of fish and fish n-3 polyunsaturated fatty acids in breast and colorectal cancer., Eur J Cancer Prev, volume 8, issue 3, pages 213-21, Jul 1999, PMID 10443950
  42. M. Gago-Dominguez, JM. Yuan, CL. Sun, HP. Lee, MC. Yu, Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study., Br J Cancer, volume 89, issue 9, pages 1686-92, Nov 2003, doi 10.1038/sj.bjc.6601340, PMID 14583770
  43. C. Stripp, K. Overvad, J. Christensen, BL. Thomsen, A. Olsen, S. Møller, A. Tjønneland, Fish intake is positively associated with breast cancer incidence rate., J Nutr, volume 133, issue 11, pages 3664-9, Nov 2003, PMID 14608091
  44. PD. Terry, JB. Terry, TE. Rohan, Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: recent epidemiological studies, biological mechanisms, and directions for future research., J Nutr, volume 134, issue 12 Suppl, pages 3412S-3420S, Dec 2004, PMID 15570047
  45. MD. Holmes, GA. Colditz, DJ. Hunter, SE. Hankinson, B. Rosner, FE. Speizer, WC. Willett, Meat, fish and egg intake and risk of breast cancer., Int J Cancer, volume 104, issue 2, pages 221-7, Mar 2003, doi 10.1002/ijc.10910, PMID 12569578
  46. S. A Missmer, Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies, International Journal of Epidemiology, volume 31, issue 1, 2002, pages 78–85, ISSN 14643685, doi 10.1093/ije/31.1.78