Calories burned running and walking

Knowing how many calories you burn during exercise can be useful both for weight loss and overall health. If you're trying to lose weight, then burning more calories may help, and if you're on a calorie controlled diet, then understanding your calorie burn becomes critical for managing your calorie intake. Understanding how fast your burning calories also has an implication for overall health, as it's a useful measure of exercise intensity. If you're running, you burn the same number of calories per mile regardless of speed. That means the rate your burning calories is directly proportional to your pace. Walking is rather different, and the faster you walk, the more calories it takes to cover each mile. The calories burnt in both running and walking are also directly proportional to your body weight, so the heavier you are the more calories you burn. In addition, you obviously burn more calories it going uphill than on the level, and for modest slopes you burn less calories and going downhill. This page will allow you to estimate your calorie burn for different paces and slopes. By default, this page shows the values for a 150 pound person, but you can use the form below to customize it.

Body Weight (optional)

Contents

1 The Difference Between Running and Walking

Running and walking are two different forms of movement. In running you either have one foot on the ground or both feet in the air; both feet are never on the ground at the same time. In contrast, when walking you either have one or both feet on the ground and never have both feet in the air. Sometimes people think that basic physics means that it should take the same energy to move a human over a given distance regardless of running or walking. However, both running and walking are quite inefficient, so most of the energy expended does not go to forward movement. This is most easily seen when you compare a runner with a cyclist; for the same effort, the cyclist will move far faster. This means that the energy cost of running and walking is mostly around how much energy is wasted in each form of movement.

2 Do You Burn More Calories Running or Walking?

Generally, the answer is that running burns more calories per mile than walking, but as is so often the case, the real answer is "it depends".

  • If you're running at a moderate pace, you burn more calories per mile and per hour than walking at a moderate pace.
  • If you're race walking, then you can burn more calories per mile than running. (Race walking here is faster than about 14:00 min/mile.)
  • The relative Calories per hour for race walking and running will depend on the exact paces.

3 Should You Run or Walk in an Ultramarathon?

The table below gives some insight into when you should run and when you should walk in an ultra. This table shows how the slope would change your pace if you keep the same effort (Calories per hour). The first column is the running pace on the flat, then each column shows the pace you would travel if you run or walk on various slopes. The table is based on the available research, and there are obviously some practical limitations that make some values unreasonable for most people. As noted above, it's more efficient to walk than to run on level ground, up to the natural transition pace of about 14:00 min/mile. What's surprising is that it is also more efficient to run than walk on uphill sections, even as the equivalent pace drops. So, if you're able to run at a 10:00 min/mile on the flat, you could go up a 10% grade with the same effort at 16:35 min/mile when running or 17:39 min/mile when walking. This seems rather bizarre when both paces are below the natural transition pace (see below), but when I tested this out I found to my surprise it appears to be true. That doesn't mean you should run up the hills, as walking may be a useful break and using different muscles may help with fatigue. In addition, unless you've practiced race walking technique it's unlikely you'll be able to efficiently hit the faster downhill walking paces, where you may be able to hit the downhill running pace. For example, if you're running a 10:00 min/mile pace on the level, you may be able to handle running the 5:59 min/mile pace down a 10% decline, but few people will be able to walk at a 7:28 min/mile pace down the same slope. So it may not make much difference if you take walking breaks uphill or on the level, but you don't want to take them on the downhill sections. (In the table below, I've used a blue font where the walking pace is faster than the equivalent running pace.)

Equiv Pace on Slope
-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Flat Running Pace Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk Run Walk
3:00 1:48 3:28 1:58 3:41 2:10 3:55 2:25 4:10 2:41 4:26 3:00 4:42 3:20 4:60 3:43 5:18 4:06 5:37 4:32 5:57 4:58 6:18 5:26 6:40 5:56 7:02 6:26 7:26 6:58 7:50 7:30 8:15
3:30 2:06 3:42 2:17 3:57 2:32 4:13 2:49 4:30 3:08 4:48 3:30 5:08 3:54 5:28 4:20 5:50 4:47 6:13 5:17 6:36 5:48 7:02 6:21 7:28 6:55 7:55 7:31 8:23 8:07 8:53 8:45 9:24
4:00 2:23 3:55 2:37 4:11 2:54 4:30 3:13 4:49 3:35 5:10 4:00 5:32 4:27 5:56 4:57 6:21 5:28 6:47 6:02 7:15 6:38 7:45 7:15 8:16 7:54 8:48 8:35 9:22 9:17 9:57 10:00 10:34
4:30 2:41 4:06 2:57 4:25 3:15 4:45 3:37 5:06 4:02 5:30 4:30 5:55 5:01 6:22 5:34 6:50 6:10 7:21 6:48 7:53 7:28 8:28 8:10 9:04 8:54 9:42 9:39 10:22 10:27 11:03 11:16 11:47
5:00 2:59 4:16 3:16 4:37 3:37 4:59 4:01 5:23 4:29 5:49 5:00 6:17 5:34 6:47 6:11 7:20 6:51 7:54 7:33 8:31 8:17 9:11 9:04 9:52 9:53 10:36 10:44 11:23 11:36 12:12 12:31 13:03
5:30 3:17 4:26 3:36 4:48 3:59 5:12 4:26 5:39 4:56 6:07 5:30 6:38 6:07 7:12 6:48 7:48 7:32 8:28 8:18 9:10 9:07 9:54 9:59 10:42 10:52 11:33 11:48 12:27 12:46 13:23 13:46 14:23
6:00 3:35 4:35 3:56 4:59 4:21 5:25 4:50 5:53 5:23 6:25 6:00 6:59 6:41 7:36 7:25 8:17 8:13 9:01 9:03 9:48 9:57 10:39 10:53 11:33 11:52 12:31 12:52 13:33 13:56 14:39 15:01 15:48
6:30 3:53 4:43 4:15 5:09 4:42 5:37 5:14 6:08 5:50 6:42 6:30 7:19 7:14 8:00 8:02 8:45 8:54 9:34 9:49 10:27 10:47 11:24 11:47 12:26 12:51 13:32 13:57 14:43 15:05 15:59 16:16 17:21
7:00 4:11 4:51 4:35 5:18 5:04 5:48 5:38 6:21 6:17 6:58 7:00 7:39 7:48 8:24 8:39 9:14 9:35 10:08 10:34 11:07 11:36 12:11 12:42 13:21 13:50 14:37 15:01 15:58 16:15 17:26 17:31 19:01
7:30 4:29 4:58 4:55 5:27 5:26 5:59 6:02 6:35 6:44 7:15 7:30 7:59 8:21 8:48 9:16 9:42 10:16 10:42 11:19 11:48 12:26 12:60 13:36 14:19 14:49 15:45 16:06 17:19 17:24 19:01 18:46 20:53
8:00 4:47 5:05 5:14 5:36 5:47 6:09 6:26 6:48 7:11 7:30 8:00 8:18 8:54 9:11 9:53 10:11 10:57 11:17 12:04 12:30 13:16 13:51 14:31 15:20 15:49 16:58 17:10 18:47 18:34 20:47 20:01 23:03
8:30 5:05 5:12 5:34 5:44 6:09 6:20 6:50 7:00 7:37 7:46 8:30 8:37 9:28 9:35 10:31 10:40 11:38 11:53 12:50 13:14 14:05 14:44 15:25 16:25 16:48 18:18 18:14 20:25 19:44 22:49 21:16 N/A
9:00 5:23 5:18 5:54 5:51 6:31 6:29 7:15 7:12 8:04 8:01 9:00 8:56 10:01 9:59 11:08 11:09 12:19 12:29 13:35 13:60 14:55 15:41 16:19 17:36 17:47 19:47 19:19 22:17 20:53 N/A 22:31 N/A
9:30 5:41 5:24 6:13 5:59 6:53 6:39 7:39 7:24 8:31 8:16 9:30 9:15 10:35 10:23 11:45 11:40 13:00 13:07 14:20 14:48 15:45 16:42 17:14 18:54 18:47 21:27 20:23 N/A 22:03 N/A 23:46 N/A
10:00 5:59 5:30 6:33 6:06 7:14 6:48 8:03 7:36 8:58 8:31 10:00 9:34 11:08 10:47 12:22 12:11 13:41 13:47 15:06 15:39 16:35 17:48 18:08 20:21 19:46 23:26 21:27 N/A 23:13 N/A N/A N/A
10:30 6:17 5:35 6:52 6:13 7:36 6:57 8:27 7:47 9:25 8:45 10:30 9:53 11:41 11:11 12:59 12:42 14:22 14:29 15:51 16:34 17:24 19:01 19:03 22:01 20:45 N/A 22:32 N/A N/A N/A N/A N/A
11:00 6:34 5:40 7:12 6:20 7:58 7:05 8:51 7:58 9:52 8:60 11:00 10:12 12:15 11:36 13:36 13:15 15:03 15:13 16:36 17:33 18:14 20:23 19:57 N/A 21:44 N/A 23:36 N/A N/A N/A N/A N/A
11:30 6:52 5:45 7:32 6:26 8:19 7:13 9:15 8:09 10:19 9:14 11:30 10:31 12:48 12:02 14:13 13:50 15:44 15:60 17:21 18:38 19:04 21:59 20:51 N/A 22:44 N/A N/A N/A N/A N/A N/A N/A
12:00 7:10 5:50 7:51 6:32 8:41 7:22 9:39 8:20 10:46 9:28 12:00 10:50 13:22 12:28 14:50 14:26 16:25 16:50 18:07 19:51 19:54 23:58 21:46 N/A 23:43 N/A N/A N/A N/A N/A N/A N/A
12:30 7:28 5:55 8:11 6:38 9:03 7:30 10:03 8:30 11:13 9:43 12:30 11:09 13:55 12:55 15:27 15:03 17:06 17:45 18:52 21:15 20:43 N/A 22:40 N/A N/A N/A N/A N/A N/A N/A N/A N/A
13:00 7:46 5:59 8:31 6:44 9:25 7:37 10:28 8:41 11:40 9:57 13:00 11:29 14:28 13:22 16:04 15:44 17:48 18:45 19:37 22:58 21:33 N/A 23:35 N/A N/A N/A N/A N/A N/A N/A N/A N/A
13:30 8:04 6:03 8:50 6:50 9:46 7:45 10:52 8:51 12:06 10:11 13:30 11:49 15:02 13:51 16:42 16:27 18:29 19:54 20:23 N/A 22:23 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 The Effect of Incline

It's intuitively obvious that running or walking uphill is harder than level ground. It's also reasonably obvious that modest downhill slopes are easier than level ground, but as the slope increases so the difficulty becomes greater. Scientific research has supported and quantified this[1], showing that the energy cost of walking or running is to lowest at about 10% decline. There is some evidence that the slope of minimum energy is independent of pace[2]. This slope of minimum energy requirement seems to corresponds with the slope that neither requires pushing back for forward movement nor energy dissipation for braking[3]. The two graphs below show the relationship between slope and the cost of walking/running as measured by a number of studies.

The energy cost of running for various slopes.
The energy cost of walking for various slopes.

There are a number of factors that could change these assumptions:

  • A study looked at the energy cost of uphill, level, and downhill running before and after a 65Km mountainous ultramarathon[4]. After the race, the energy cost of uphill running was unchanged, but both level and downhill running were significantly harder by 8% (level) and 13% (downhill). These differences were greatest for the slowest runners and at least for the fastest runners.
  • A similar study of a rather more extreme 303 Km mountain ultramarathon found that the energy cost of uphill running and walking was lower after the race[5]. This result is a little surprising, and it's unclear why runners would do better fatigued than fresh. (The study did not look at level or downhill running.)
  • I've found no research on the effect of training on the energy cost of running uphill or downhill. I would expect that downhill training would reduce the energy cost of downhill running.

5 The Transition Between Running and Walking

The energy required to run a given distance is the roughly the same regardless of pace. This is different to walking, where the energy required to walk a given distance generally goes up with pace. This means that at slow speeds, it costs less energy to walk than run, but as you go faster it becomes easier to run. When people are put on a treadmill and the speed gradually increased, they will naturally transition from walking to running. This transition occurs at roughly the same speed for most people and is called the Preferred Transition Speed (PTS)[6]. You can see this in the two graphs below. The graph on the left shows the energy expenditure over time, showing the energy required to walk goes up faster than for running. The graph on the right shows the cost per distance, with running staying constant and the cost of walking rising with pace. (It takes more energy to walk a distance very slowly, so the graph shows the low point which is the lowest energy cost to cover a distance.)

Energy cost over time.
Energy cost over distance.

6 Calories Per Hour

This table shows the number of Calories used per hour for a person weighing 80 Kg.

Slope Running per hour (pace in min/Km) Walk per hour (pace in min/Km)
8:00 7:00 6:00 5:00 4:00 3:00 18:00 17:00 16:00 15:00 14:00 13:00 12:00 11:00 10:00 9:00 8:00 7:00
0.0% 518 591 690 828 1,035 1,380 203 212 221 232 249 272 300 338 384 453 548 686
0.5% 533 609 710 852 1,065 1,420 213 222 233 248 266 286 315 355 402 473 570 711
1.0% 548 626 730 876 1,095 1,460 223 233 244 260 279 300 330 371 420 493 593 737
1.5% 563 643 750 900 1,125 1,500 233 244 255 272 291 314 345 387 438 513 615 763
2.0% 578 660 770 924 1,155 1,540 243 254 266 284 304 328 360 404 456 533 638 789
2.5% 593 677 790 948 1,185 1,580 253 265 278 296 317 342 375 420 474 553 660 814
3.0% 608 694 810 972 1,215 1,620 263 275 289 308 330 355 390 436 492 573 683 840
3.5% 623 711 830 996 1,245 1,660 277 286 300 320 343 369 405 453 510 593 705 857
4.0% 638 729 850 1,020 1,275 1,700 287 296 311 332 356 383 420 469 528 613 728 883
4.5% 653 746 870 1,044 1,305 1,740 297 307 326 344 369 397 435 485 546 633 750 909
5.0% 675 771 900 1,080 1,350 1,800 307 321 338 356 381 411 450 502 564 653 765 934
5.5% 690 789 920 1,104 1,380 1,840 317 332 349 368 394 425 465 518 582 673 788 960
6.0% 705 806 940 1,128 1,410 1,880 327 342 360 380 407 438 480 535 600 687 810 986
6.5% 728 831 970 1,164 1,455 1,940 337 353 371 392 420 452 495 551 618 707 833 1,011
7.0% 743 849 990 1,188 1,485 1,980 347 364 383 404 433 466 510 567 636 727 855 1,037
7.5% 758 866 1,010 1,212 1,515 2,020 357 374 394 416 446 480 525 584 654 747 878 1,063
8.0% 780 891 1,040 1,248 1,560 2,080 367 385 405 428 459 494 540 600 672 767 900 1,089
8.5% 795 909 1,060 1,272 1,590 2,120 380 395 416 440 471 508 555 611 690 787 923 1,114
9.0% 818 934 1,090 1,308 1,635 2,180 390 406 428 452 484 522 570 627 708 807 945 1,140
9.5% 840 960 1,120 1,344 1,680 2,240 400 416 439 464 497 535 585 644 726 827 968 1,157
10.0% 855 977 1,140 1,368 1,710 2,280 410 427 450 476 510 549 600 660 744 847 990 1,183
10.5% 878 1,003 1,170 1,404 1,755 2,340 420 438 461 492 523 563 615 676 762 867 1,013 1,209
11.0% 893 1,020 1,190 1,428 1,785 2,380 430 452 473 504 536 577 630 693 780 887 1,035 1,234
11.5% 915 1,046 1,220 1,464 1,830 2,440 440 462 484 516 549 591 645 709 798 907 1,058 1,260

7 Calories Per Distance

This table shows the number of Calories used to cover a Kmfor a person weighing 80 Kg.

Slope Running Walk 18:00
min/Km
Walk 17:00
min/Km
Walk 16:00
min/Km
Walk 15:00
min/Km
Walk 14:00
min/Km
Walk 13:00
min/Km
Walk 12:00
min/Km
Walk 11:00
min/Km
Walk 10:00
min/Km
Walk 9:00
min/Km
Walk 8:00
min/Km
Walk 7:00
min/Km
0.0% 69 61 60 59 58 58 59 60 62 64 68 73 80
0.5% 71 64 63 62 62 62 62 63 65 67 71 76 83
1.0% 73 67 66 65 65 65 65 66 68 70 74 79 86
1.5% 75 70 69 68 68 68 68 69 71 73 77 82 89
2.0% 77 73 72 71 71 71 71 72 74 76 80 85 92
2.5% 79 76 75 74 74 74 74 75 77 79 83 88 95
3.0% 81 79 78 77 77 77 77 78 80 82 86 91 98
3.5% 83 83 81 80 80 80 80 81 83 85 89 94 100
4.0% 85 86 84 83 83 83 83 84 86 88 92 97 103
4.5% 87 89 87 87 86 86 86 87 89 91 95 100 106
5.0% 90 92 91 90 89 89 89 90 92 94 98 102 109
5.5% 92 95 94 93 92 92 92 93 95 97 101 105 112
6.0% 94 98 97 96 95 95 95 96 98 100 103 108 115
6.5% 97 101 100 99 98 98 98 99 101 103 106 111 118
7.0% 99 104 103 102 101 101 101 102 104 106 109 114 121
7.5% 101 107 106 105 104 104 104 105 107 109 112 117 124
8.0% 104 110 109 108 107 107 107 108 110 112 115 120 127
8.5% 106 114 112 111 110 110 110 111 112 115 118 123 130
9.0% 109 117 115 114 113 113 113 114 115 118 121 126 133
9.5% 112 120 118 117 116 116 116 117 118 121 124 129 135
10.0% 114 123 121 120 119 119 119 120 121 124 127 132 138
10.5% 117 126 124 123 123 122 122 123 124 127 130 135 141
11.0% 119 129 128 126 126 125 125 126 127 130 133 138 144
11.5% 122 132 131 129 129 128 128 129 130 133 136 141 147

8 Training Status Effects

The graph on the below shows that there are slight, non-significant differences between runners and active non-runners. This indicates that training does not change the transition speed, though it's worth noting that the actual transition speed is slower than would be expected from the energy costs[6]. Also note that the actual cost of running is not quite constant with speed, but actually goes down as you go faster.

The energy cost for runners and non-runners, showing the Preferred Transition Speed (PTS) and the Energetically Optimal Transition Speed (ETOS).

9 Formula

for those who like to create their own tables, below are the underlying formulas that I'm using. The cost of running (Cri) and walking (Cwi) on a slope is given by these equations:

Cri = 155.4i5 - 30.4i4 - 43.3i3 + 46.3i2 + 19.5i + 3.6
Cwi = 280.5i5 - 58.7i4- 76.8i3+ 51.9i22+ 19.6i + 2.5

Where i is the slope and the result I in Jules per Kg per Meter.

10 References

  1. AE. Minetti, C. Moia, GS. Roi, D. Susta, G. Ferretti, Energy cost of walking and running at extreme uphill and downhill slopes., J Appl Physiol, volume 93, issue 3, pages 1039-46, Sep 2002, doi 10.1152/japplphysiol.01177.2001, PMID 12183501
  2. Minetti, A. E., L. P. Ardigo, and F. Saibene. "Mechanical determinants of the minimum energy cost of gradient running in humans." Journal of Experimental Biology 195.1 (1994): 211-225.
  3. K. L. Snyder, R. Kram, J. S. Gottschall, The role of elastic energy storage and recovery in downhill and uphill running, Journal of Experimental Biology, volume 215, issue 13, 2012, pages 2283–2287, ISSN 0022-0949, doi 10.1242/jeb.066332
  4. Gianluca Vernillo, Aldo Savoldelli, Andrea Zignoli, Spyros Skafidas, Alessandro Fornasiero, Antonio La Torre, Lorenzo Bortolan, Barbara Pellegrini, Federico Schena, Energy cost and kinematics of level, uphill and downhill running: fatigue-induced changes after a mountain ultramarathon, Journal of Sports Sciences, volume 33, issue 19, 2015, pages 1998–2005, ISSN 0264-0414, doi 10.1080/02640414.2015.1022870
  5. Gianluca Vernillo, Aldo Savoldelli, Spyros Skafidas, Andrea Zignoli, Antonio La Torre, Barbara Pellegrini, Guido Giardini, Pietro Trabucchi, Grégoire P. Millet, Federico Schena, An Extreme Mountain Ultra-Marathon Decreases the Cost of Uphill Walking and Running, Frontiers in Physiology, volume 7, 2016, ISSN 1664-042X, doi 10.3389/fphys.2016.00530
  6. 6.0 6.1 A. Rotstein, O. Inbar, T. Berginsky, Y. Meckel, Preferred transition speed between walking and running: effects of training status., Med Sci Sports Exerc, volume 37, issue 11, pages 1864-70, Nov 2005, PMID 16286854