Changes

Delayed Onset Muscle Soreness

4,283 bytes added, 22:09, 2 February 2013
no edit summary
Delayed Onset Muscle Soreness (DOMS) is a familiar experience to most people who exercise. It affects people who weight train and run particularly, and DOMS can produce anything from mild muscle soreness to debilitating pain and weakness. DOMS is caused by eccentric stress, where the muscles working to resist lengthening, such as lowering a weight or absorbing the landing forces of running. [[Downhill_RunningDownhill Running| Downhill running]] is a particular source of eccentric stress. DOMS not only produces delayed soreness, but immediate weakness that generally lasts a similar length of time. DOMS also produces swelling, tense muscles, reduced coordination and a limited range of motion. A key benefit of DOMS inducing exercise is that a bout of DOMS can give protection against similar future exercise, and the protection lasts for months. Running with the correct [[Cadence]] can help prevent DOMS, and [[Nutrient_TimingNutrient Timing| Taking taking protein]] after DOMS inducing exercise is one of the best treatments, though [[Why_compression_clothesWhy compression clothes| compression clothing]], [[Caffeine| caffeine]] and [[Massage| massage]] can also help.
=What is DOMS?=
The soreness of DOMS generally peaks between 24 and 72 hours after unusual or severe exercise, though soreness may occur sooner after running<ref name="Vickers2001"/>. DOMS is particularly related to eccentric exercise, which is where the muscle works to resist becoming longer, rather than working to contract. When you muscles absorb the impact of running, this is eccentric exercise, and [[Downhill Running]] is more eccentric than flat or uphill running. The images below show the damage that occurs from eccentric exercise<ref name="FeassonStockholm2002"/> and marathon running<ref name="Warhol-1985"/>:
|None
|-
|[[Nutrient_TimingNutrient Timing| Carbohydrate and/or protein]]
|After
|Some evidence of reduced soreness
|None
|-
|[[Why_compression_clothesCadence]]|During|Some evidence of reduced soreness|Some evidence of reduced soreness|None|-|[[Why compression clothes| Compression Clothing]]
|After
|Some evidence of reduced soreness
|Transient pain reduction
|No benefit
|None<sup>c</sup>
|-
|TENS
* Can lead to injury
|-
|[[NSAIDs_and_RunningNSAIDs and Running| NSAIDs]]
|Before and/or After
|Most evidence indicates no benefit
* <sup>a</sup>Caffeine can interfere with sleep
* <sup>b</sup> Only ever use ice in a bag, never a frozen gel pack. Gel packs start too cold and can cause skin or nerve damage.
* <sup>c</sup> Light exercise does not appear to speed up healing, but it does not hinder it either.
==Repeated Bout Effect==
The DOMS that follows an initial bout of eccentric exercise is much less on subsequent similar bouts. This is often called the Repeated Bout Effect (RBE)<ref name="Howatson-2008"/><ref name="Cheung-2003"/>. The initial bout does not have to cause significant soreness or damage<ref name="Clarkson-1987"/>. As few as 2-10 maximal eccentric repetitions can protect against a subsequent larger bout (24-50), but the initial bout must be close to maximal effort<ref name="Brown-1997"/>. By contrast, eight weeks of training with 50% of the maximal eccentric load did not provide protection against a subsequent maximal bout<ref name="Nosaka-2002"/>. There is some cross-over of protection between different forms of exercise. For instance, eccentric weight training protects against soreness and weakness in subsequent downhill running<ref name="Eston-1996"/>. The protection from the RBE is long lived. One study showed that while the initial weakness was not reduced by the RBE, the recovery of strength was much faster for up to 9 months, and soreness was less for up to 6 months<ref name="Nosaka-2001"/>. Another study showed that 30 minutes of downhill running provides protection for between 6 and 9 weeks<ref name="Byrnes-1985"/>. There is evidence that the RBE may rapidly start to provide protection from soreness and weakness<ref name="Mair-1995"/>, within 5 days<ref name="Ebbeling-1989"/>, and possibly as soon as within 24 hours post exercise<ref name="Chen-2001"/>.
==Carbohydrate and Protein==
{{Main| Nutrient Timing}}
The damage of DOMS requires repair, so it's not surprising that taking protein or amino acids, which are the building blocks of the muscle fibers, helps with recovery.
* Most studies show that amino acids reduce muscle soreness<ref name="HowatsonHoad2012"/><ref name="Greer-2007"/> <ref name="Matsumoto-2009"/><ref name="Shimomura-2010"/>, and may<ref name="Shimomura-2010"/><ref name="Greer-2007"/> or may not reduce weakness<ref name="Jackman-2010"/><ref name="Nosaka-2006"/><ref name="Jackman-2010"/>.
* Most studies have shown that protein will reduce muscle weakness after DOMS inducing exercise<ref name="CockburnHayes2008"/><ref name="Valentine-2008"/> <ref name="CookeRybalka2010"/><ref name="Cockburn-2010"/><ref name="Etheridge-2008"/>, with only two studies showing no improvement<span style='color:#FF0000'><ref name="Wojcik-2001"/><ref name="Green-2008"/></span>.
* The effect of protein on soreness is more mixed with some studies showing improvement<ref name="Luden-2007"/> <ref name="Flakoll-2004"/><ref name="Etheridge-2008"/>, but others not<ref name="CockburnHayes2008"/><ref name="Samadi-2012"/><ref name="Green-2008"/>.
* Not surprisingly [[Nutrient Timing| timing]] may be important, with CHO+PRO having an effect on muscle weakness directly after or 24 hours after, but not before DOMS inducing exercise<ref name="Cockburn-2010"/>, as shown below.
|[[File:DOMS Protein Power.jpg|none|thumb|300px|Peak power generated after DOMS inducing eccentric exercise.(*is significant change from baseline, double S marker indicates significant change from treatment.)]]
|}
==Cadence==
{{Main|Cadence}}
A study that looked at how changes in [[Cadence]] impacted the DOMS symptoms of downhill running showed that compared with a runner's preferred cadence, a higher cadence reduced subsequent weakness while a lower cadence increased soreness<ref name="RowlandsEston2001"/>. This change in DOMS is not surprising given that an increased cadence reduces the impact forces of running<ref name="Mercer-2003"/><ref name="Hamill-1995"/><ref name="Clarke-1985"/>. The impact forces from a lower cadence are mostly absorbed by the knee<ref name="Derrick-1998"/>, which would create greater eccentric loading of the quads. In addition, most<ref name="Jones-1989"/><ref name="Child-1998"/> (but not all<ref name="Paschalis-2005"/>) studies show that the more extended a muscle is when undergoing eccentric stress, the more likely it is to suffer from DOMS. This is likely to compound the effect of Cadence on DOMS.
==Compression Clothing ==
{{Main| Why compression clothes}}
Performing a [[Warmup]] before exercise may help reduce DOMS pain<ref name="Law-2007"/><ref name="RahnamaRahmani-Nia2005"/>, but not all studies support this<ref name="Evans-2002"/>.
==Light Exercise==
Light training in the days following DOMS inducing exercise generally accepted to be one of the most effective ways of reducing muscle soreness, but unfortunately the reduction in pain is temporary<ref name="Armstrong-1984"/><ref name="Zainuddin-2006"/><ref name="Howatson-2008"/><ref name="Cheung-2003"/>.A study that looked at running 30 minutes/day after DOMS inducing downhill running shows that the extra exercise neither helped nor hindered with soreness, weakness or running economy<ref name="ChenNosaka2008"/>. (The study only looked at the 7 days following the downhill running, and it would be interesting to know if there are any longer term differences.)
==TENS==
TENS may reduce the soreness of DOMS<ref name="Denegar-1989"/>, but the effect seems to be transient<ref name="Denegar"/> and the effect is reduced if combined with icing<ref name="Denegar-1992"/>. Not all studies show any pain reduction<ref name="Bonacci-1997"/> and none show a reduction in the weakness.
=References=
<references>
<ref name="ChenNosaka2008">Trevor C. Chen, Kazunori Nosaka, Chia-Ching Wu, Effects of a 30-min running performed daily after downhill running on recovery of muscle function and running economy, Journal of Science and Medicine in Sport, volume 11, issue 3, 2008, pages 271–279, ISSN [http://www.worldcat.org/issn/14402440 14402440], doi [http://dx.doi.org/10.1016/j.jsams.2007.02.015 10.1016/j.jsams.2007.02.015]</ref>
<ref name="Paschalis-2005"> V. Paschalis, Y. Koutedakis, V. Baltzopoulos, V. Mougios, AZ. Jamurtas, G. Giakas, Short vs. long length of rectus femoris during eccentric exercise in relation to muscle damage in healthy males., Clin Biomech (Bristol, Avon), volume 20, issue 6, pages 617-22, Jul 2005, doi [http://dx.doi.org/10.1016/j.clinbiomech.2005.02.011 10.1016/j.clinbiomech.2005.02.011], PMID [http://www.ncbi.nlm.nih.gov/pubmed/15927735 15927735]</ref>
<ref name="Child-1998"> RB. Child, JM. Saxton, AE. Donnelly, Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and angle-specific force production in humans., J Sports Sci, volume 16, issue 4, pages 301-8, May 1998, doi [http://dx.doi.org/10.1080/02640419808559358 10.1080/02640419808559358], PMID [http://www.ncbi.nlm.nih.gov/pubmed/9663954 9663954]</ref>
<ref name="Jones-1989"> DA. Jones, DJ. Newham, C. Torgan, Mechanical influences on long-lasting human muscle fatigue and delayed-onset pain., J Physiol, volume 412, pages 415-27, May 1989, PMID [http://www.ncbi.nlm.nih.gov/pubmed/2600839 2600839]</ref>
<ref name="Hamill-1995"> Hamill, J., T. R. Derrick, and K. G. Holt. "Shock attenuation and stride frequency during running." Human Movement Science 14.1 (1995): 45-60.</ref>
<ref name="Mercer-2003"> JA. Mercer, P. Devita, TR. Derrick, BT. Bates, Individual effects of stride length and frequency on shock attenuation during running., Med Sci Sports Exerc, volume 35, issue 2, pages 307-13, Feb 2003, doi [http://dx.doi.org/10.1249/01.MSS.0000048837.81430.E7 10.1249/01.MSS.0000048837.81430.E7], PMID [http://www.ncbi.nlm.nih.gov/pubmed/12569221 12569221]</ref>
<ref name="Pearce-2009">Pearce, Alan J., et al. "Wearing a sports compression garment on the performance of visuomotor tracking following eccentric exercise: A pilot study." Journal of science and medicine in sport 12.4 (2009): 500-502.</ref>
<ref name="CarlingFrancis1995">Jon Carling, Kennon Francis, Christopher Lorish, The effects of continuous external compression on delayed-onset muscle soreness (DOMS), International Journal of Rehabilitation and Health, volume 1, issue 4, 1995, pages 223–235, ISSN [http://www.worldcat.org/issn/1068-9591 1068-9591], doi [http://dx.doi.org/10.1007/BF02214641 10.1007/BF02214641]</ref>
<ref name="Bourgeois-1999"> J. Bourgeois, D. MacDougall, J. MacDonald, M. Tarnopolsky, Naproxen does not alter indices of muscle damage in resistance-exercise trained men., Med Sci Sports Exerc, volume 31, issue 1, pages 4-9, Jan 1999, PMID [http://www.ncbi.nlm.nih.gov/pubmed/9927002 9927002]</ref>
<ref name="Chen-2001"> TC. Chen, SS. Hsieh, Effects of a 7-day eccentric training period on muscle damage and inflammation., Med Sci Sports Exerc, volume 33, issue 10, pages 1732-8, Oct 2001, PMID [http://www.ncbi.nlm.nih.gov/pubmed/11581559 11581559]</ref>
<ref name="Ebbeling-1989"> CB. Ebbeling, PM. Clarkson, Exercise-induced muscle damage and adaptation., Sports Med, volume 7, issue 4, pages 207-34, Apr 1989, PMID [http://www.ncbi.nlm.nih.gov/pubmed/2657962 2657962]</ref>
<ref name="RowlandsEston2001">Ann V. Rowlands, Roger G. Eston, Caroline Tilzey, Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect, Journal of Sports Sciences, volume 19, issue 5, 2001, pages 333–340, ISSN [http://www.worldcat.org/issn/0264-0414 0264-0414], doi [http://dx.doi.org/10.1080/02640410152006108 10.1080/02640410152006108]</ref>
</references>